Ресинтез триацилглицеринов в стенке кишечника.
Содержание книги
- Мужские половые гормоны. Синтез, механизм клеточного действия. Влияние на обмен веществ.
- Строение женских половых гормонов
- Регуляция синтеза и секреции. Секреция инсулина происходит постоянно, и около 50% инсулина
- Два механизма действия инсулина
- Реакции, связанные с активацией MAP-киназного пути
- Нарушение обмена веществ при инсулиновой недостаточности.
- Взаимосвязь различных видов обмена. Регуляция метаболизма.
- Общие понятия о биологическом окислении. Значение работ советских ученых в открытии и развитии учения о биологическом окислении. АТФ - универсальная форма энергии в клетке.
- Комплекс. НАДН-КоQ-оксидоредуктаза
- Понятие о метаболических путях. Общие и специфические пути катаболизма углеводов, жиров, аминокислот.
- Роль оксалоацетата в метаболизме
- Строение некоторых производных моносахаридов
- Гетерополисахариды. Отдельные представители. Биологическая роль.
- Полиоловый путь превращения глюкозы
- Анаэробный распад глюкозы (гликолиз). Этапы. Гликолитическая оксидоредукция. Регуляция. Физиологическое значение анаэробного распада глюкозы. Баланс энергии.
- Аэробное окисление глюкозы. Изложить анаэробную фазу.
- Изменение скорости реакций цтк и причины накопления кетоновых тел при некоторых состояниях
- Мобилизация гликогена (гликогенолиз)
- Схематичное расположение дефектных ферментов при различных гликогенозах
- Включение глицерина в синтез глюкозы
- Высшие жирные кислоты, структура, свойства, биологическая роль. Понятие о полиненасыщенных жирных кислотах.
- Гликолипиды - рецепторные молекулы
- Липиды пищи, их характеристика. Суточная потребность в липидах.
- Полный ферментативный гидролиз триацилглицерола
- Нарушения переваривания и всасывания пищевых жиров.
- Ресинтез триацилглицеринов в стенке кишечника.
- Формирование кетоновых тел. Причины и последствия кетоза.
- Удлинение цепи жирных кислот
- Реакции синтеза таг из фосфатидной кислоты
- Холестерин, строение, свойства, основные этапы синтеза и его регуляция.
- Пищевые продукты - источники белков. Нормы белка в питании. Биологическая ценность белков. Понятие об азотистом балансе.
- Переваривание белков в желудке, характеристика ферментов. Роль соляной кислоты.
- Изменение кислотности в желудке
- Переваривание белков и полипептидов в кишечнике. Характеристика протеиназ.
- Возможные пути превращений аминокислот
- Схема реакции трансаминирования
- Декарбоксилирование аминокислот. Гистамин, серотонин и другие биогенные амины.
- Появление аммиака в клетках непрерывно
- Реакции глюкозо-аланинового цикла (выделен рамкой).
- Взаимосвязь обмена серина, глицина, метионина и цистеина
- Синтез креатина и креатинина, креатинфосфат - дополнительный источник энергии мышечного сокращения.
- Патология белкового обмена. Белковое голодание. Причины и последствия.
- Врожденные нарушения обмена некоторых аминокислот (фенилкетонурия, алкаптонурия, цистиноз и цистинурия).
- Распад нуклеиновых кислот в тканях. Катаболизм пуриновых оснований.
- Реакции катаболизма пуриновых нуклеотидов
- Источники атомов пуринового кольца
- Биосинтез пиримидиновых нуклеотидов в тканях.
- Нарушения порфиринового обмена. Порфирии.
- Этапы метаболизма билирубина в организме
- Схема патогенеза механической желтухи
Ресинтез триацилглицеролов
Для ресинтеза ТАГ есть два пути:
Первый путь, основной – 2-моноацилглицеридный – происходит при участии экзогенных 2-МАГ и ЖК в гладком эндоплазматическом ретикулуме энтероцитов: мультиферментный комплекс триацилглицерол-синтазы формирует ТАГ.

Моноацилглицеридный путь образования ТАГ
Поскольку 1/4 часть ТАГ в кишечнике полностью гидролизуется, а глицерол в энтероцитах не задерживается и быстро переходит в кровь, то возникает относительный избыток жирных кислот для которых не хватает глицерола. Поэтому существует второй, глицеролфосфатный, путь в шероховатом эндоплазматическом ретикулуме. Источником глицерол-3-фосфата служит окисление глюкозы. Здесь можно выделить следующие реакции:
1. Образование глицерол-3-фосфата из глюкозы.
2. Превращение глицерол-3-фосфата в фосфатидную кислоту.
3. Превращение фосфатидной кислоты в 1,2-ДАГ.
4. Синтез ТАГ.

Глицеролфосфатный путь образования ТАГ
Содержание липидов в крови. Транспортные формы липидов. Депонирование липидов.
Виды липидов крови
Липиды человека включают соединения, значительно различающиеся по структуре, и по функциям в живой клетке. Наиболее важные группы липидов:
1. Жирные кислоты, служат промежуточными продуктами при распаде или синтезе других липидов, окисление их происходит при недостатке пищи и при повышенной энергетической потребности.
2. Триацилглицерины, являются резервным энергетическим материалом.
3. Фосфолипиды, сфинголипиды и гликолипиды — важнейшие компоненты клеточных мембран.
4. Стероиды, наиболее распространенный их представитель — холестерин, является компонентом клеточных мембран, предшественник витамина D, желчных кислот, стероидных гормонов.
Основными липидными компонентами крови являются свободный и этерифицированный холестерин, фосфолипиды, триацилглицерины, свободные жирные кислоты. Все фракции липидов циркулируют в плазме крови в виде белково-липидных комплексов (хиломикроны, липопротеины очень низкой плотности, липопротеины низкой и высокой плотности), свободные жирные кислоты находятся в комплексе с альбуминами. Для клинической практики наиболее важным является определение количества общих липидов, триацилглицеринов, общего холестерина и его фракций, отдельных классов липопротеинов.
При работе необходимо обращать особое внимание на подготовку лабораторной посуды: она должна быть обезжирена и хорошо высушена. Определение следует проводить в свежеполученном материале, т.к. липиды подвергаются воздействию липопротеидлипазы, а замораживание разрушает структуру липопротеиновых комплексов. При получении плазмы необходимо использовать ЭДТА, поскольку гепарин активирует липопротеидлипазу.
Поскольку липиды являются в основе своей гидрофобными молекулами, то они транспортируются в водной фазе крови в составе особых частиц – липопротеинов.
Структуру транспортных липопротеинов можно сравнить с орехом, у которых имеется скорлупа и ядро. "Скорлупа" липопротеина является гидрофильной, ядро – гидрофобное.
· поверхностный гидрофильный слой формируют фосфолипиды (их полярная часть), холестерол (его ОН-группа), белки. Гидрофильность липидов поверхностного слоя призвана обеспечить растворимость липопротеиновой частицы в плазме крови,
· "ядро" формируют неполярные эфиры холестерола (ХС) и триацилглицеролы (ТАГ), которые и являются транспортируемыми жирами. Их соотношение колеблется в разных типах липопротеинов. Также к центру обращены жирнокислотные остатки фосфолипидов и циклическая часть холестерола.

|