Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Сравнение финансовых потоков и рентСодержание книги
Поиск на нашем сайте
При принятии финансовых решений часто возникает необходимость выбора между финансовыми потоками с различными параметрами. Для обоснованного принятия решений необходимо уметь сравнивать финансовые потоки и ренты. При сравнении финансовых потоков и рент какие то их параметры должны быть одинаковы, какие то параметры должны быть сопоставимы, а какие то параметры могут отличаться. Сравнение финансовых потоков и рент должно осуществляться по конечной наращенной или современной их стоимости, при этом рассматриваются финансовые потоки с равными сроками. На рис. 2.9. приведены зависимости современной А и наращенной конечной S стоимостей годовой ренты от годовой процентной ставки при сроке ренты 2 и 5 лет. Из рисунка видно, что с увеличением годовой процентной ставки современная стоимость ренты А уменьшается, а наращенная, конечная стоимость ренты увеличивается.
Рис. 2.9. Зависимость современной и наращенной стоимостей годовой ренты
Рассмотрим два потока
отличающиеся лишь размерами платежей
современная дисконтированная, и конечная наращенная стоимость при любых значениях процентной ставки " i " будет больше для первого потока. Аналогично первый финансовый поток будет предпочтительным для любых значений процентной ставки дисконтирования при выполнении условия
Но при выполнении условий (2.68) и (2.69) первый и второй финансовые потоки не являются сопоставимыми (эквивалентными), а значит, их сравнение по стоимости является не корректным. Введем условие сопоставимости финансовых потоков в виде
То есть сопоставимыми будем считать финансовые потоки, у которых сроки ренты и сумма всех платежей одинаковы. Сравним между собой годовую и r -срочную ренту. Для этих двух рент условие сопоставимости (2.70) выполняется, когда размер платежей r -срочной ренты в r раз меньше платежей годовой ренты
Из формулы (2.71) видно, что отношение
Рис. 2.10. Зависимость отношений На рис. 2.10 приведены графики зависимости отношений Сравним между собой обычную годовую и арифметическую ренту. Вычислим размеры платежей арифметической ренты, при которых выполняется условие сопоставимости рент (2.70). При сроке рент равном " n " лет суммарные платежи для обычной годовой ренты будут равны nR. Для арифметической ренты суммарные платежи будут равны
Тогда условие сопоставимости обычной годовой и арифметической рент можно записать в виде
Подставив формулу (2.73) в (2.56) с учетом формул (2.7) и (2.8) для отношения наращенных стоимостей арифметической к годовой ренте получим
где
Рис. 2.11. Зависимость отношений 5 – n = 3,
Графики зависимости отношения Sa/S от значений процентной ставки " n " при различных значениях срока ренты " n " и относительной разности Приведем сравнение геометрической ренты с обычной годовой рентой. Вычислим размеры платежей геометрической ренты, при которых выполняется условие сопоставимости (2.70) сравниваемых рент
Подставив формулу (2.75) в (2.64) с учетом формул (2.7) и (2.8) для отношения конечных наращенных сумм геометрической и простой годовой рент получим
При
Рис. 2.12. Зависимость отношений 5 – n = 3,
На рис. 2.12 приведены графики зависимости отношения Оценим на сколько предпочтительной является рента с m -кратным начислением процентов по сравнению с обычной годовой рентой. Для этого вычислим отношения
где
Рис. 2.13. Зависимости отношений
Результаты расчетов отношений Приведем сравнение r -срочной ренты при m -кратном начислением процентов с обычной годовой рентой. Современная
где Формулы () применяются для случая
Графики зависимости отношений
Рис. 2.14. Зависимости отношений
Расчет проводился для годовой процентной ставки i = 0,24 и сроке ренты n = 5 лет. При равенстве значений При
Конверсия рент
В условиях меняющейся экономической ситуации, финансового состояния субъектов экономической деятельности, особенно в условиях кризиса, часто возникает необходимость изменений условий выплаты ренты, т. е. заменить одну ренту другой или разовым платежом, либо наоборот разовый платеж заменить рентой (рассрочка платежа), а также заменить несколько рент одной. Все вышеперечисленные операции называют конверсией рент. При конверсии рент должно выполняться одно общее правило – в момент заключения сделки о конверсии рент tk современные стоимости старых рент, приведенных к моменту времени tk и современные стоимости новых рент должны быть равны. Это правило следует из естественного требования, чтобы конверсия рент не меняла финансового положения сторон сделки, т. е. на момент заключения сделки о конверсии рент должен соблюдаться принцип их финансовой эквивалентности. Данный принцип определяет следующий алгоритм расчета параметров новой ренты. 1. Определяется современная стоимость старой (старых) рент, приведенная к моменту заключения сделки tk о конверсии рент. 2. В случае объединения нескольких рент современные их стоимости, приведенные к моменту времени tk складываются и дают современную стоимость новой ренты. 3. Зная современную стоимость новой ренты, рассчитываются параметры новой ренты. Рассмотрим такие примеры конверсии рент как рассрочка платежа; выкуп ренты; замена одной ренты новой рентой; замена нескольких рент с разными параметрами одной новой рентой. 1) Рассрочка платежа. Предположим, что некоторый субъект экономической деятельности (должник) имеет задолженность в сумме
При погашении задолженности за счет банковского кредита все параметры ренты по погашению кредита определяются методикой банка. При согласии кредитора заменить единовременное погашение задолженности рентными платежами все параметры ренты (R, r, i, n) определяются договоренностью должника и кредитора. 2) Выкуп ренты. Выкупом ренты называется замена ренты единовременным платежом. Данную операцию рассмотрим на примере погашения кредита аннуитетом. Предположим, что кредит на сумму " D " руб. выдан на " n " лет под " i " процентов годовых и его погашение осуществляется постоянными ежеквартальными платежами. График платежей в погашение кредита представляет собой r -срочную ренту постнумерандо (r = 4) с количеством платежей равном " r n ". Размер аннуитета для данной ренты определяется формулой (2.33)
Ссудозаемщик регулярно осуществлял выплаты по кредиту в течение " k " платежей (см. рис. 2.15)
Рис. 2.15
При наступлении k -того платежа вместе с очередным платежом у ссудозаемщика появилась возможность досрочного погашения всей оставшейся задолженности по кредиту. Приведенную стоимость данной ренты
Первые k слагаемых в формуле (2.81) определяют конечную стоимость выплаченной части ренты
Остальные nr – k слагаемых в формуле (2.81) определяют стоимость невыплаченной части ренты, приведенной к моменту времени k -того платежа
Эта стоимость определяет оставшуюся не выплаченную при k -том платеже сумму кредита Dk. Для полного погашения кредита вместе с k -тым платежом должна быть внесена сумма
Рассчитываем сумму необходимую для досрочного погашения кредита при k = 2 втором платеже для примера, рассматриваемого в п. 2.4. в данном примере рассматриваются следующие исходные данные D = 100 тыс. руб., n = 1 год, r = 4, i = 20 %. Размер разового квартального платежа составляет В соответствии с формулой (2.83) необходимая сумма для полного погашения кредита
Данная сумма совпадает с текущей оставшейся задолженностью по кредиту, приведенной в табл. 2.1 п. 2.4 при втором (k = 2) платеже. 3) Замена двух рент одной новой рентой. Рассмотрим две ренты, график платежей по которым приведен на рис. 2.16.
Рис. 2.16
Первая рента является годовой рентой с ежегодными платежами R 1, годовой процентной ставкой i 1 и сроком ренты n 1 – лет. Вторая рента является r -срочной рентой с платежами размером Дата начала второй ренты t 20 от даты начала первой ренты t 10 сдвинута на " m " лет, то есть
Приведенная к дате tk стоимость невыплаченной части первой ренты является суммой (n 1 – k) членов убывающей геометрической прогрессии с первым членом
Из рис. 2.16 видно, что по второй ренте до даты tk совершено
Из данной формулы видно, что приведенная к дате tk стоимость невыплаченной части второй ренты является суммой (
При замене нескольких рент одной новой рентой должно обеспечиваться равенство суммы, приведенных к дате tk стоимостей старых рент современной стоимости новой ренты
Параметры новой ренты определяются из условия
где
|
||
|
Последнее изменение этой страницы: 2016-06-07; просмотров: 315; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.41 (0.012 с.) |