Технология CDMA в системах радиодоступа 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Технология CDMA в системах радиодоступа



Основная идея CDMA заключается в том, что в одной и той же полосе частот подбирается комбинация сигналов, свободных в точке приема от взаимных влияний друг на друга. Исходящий от абонента сигнал смешивается с одной из этих комбинаций (помечается кодом) - в итоге формируется и передается через канал широкополосный сигнал с распределенной энергией. Ясно, что принять информацию можно, только зная последовательность, на которую был перемножен полезный сигнал при передаче, -в противном случае он будет восприниматься как шум (отсюда и название -"шумоподобный сигнал"). Из этого следует, что сигналы от двух абонентов, находящихся в зоне действия одной базовой станции и работающих на общей частоте, но с разными кодирующими последовательностями, практически не создают помех друг для друга.

Поскольку CDMA - это чисто цифровая связь, к тому же использующая широкополосную модуляцию сигнала, то она практически не подвержена узкополосным помехам и несанкционированному доступу к информации.

Еще одним из широко провозглашенных преимуществ CDMA перед другими системами является более эффективное использование выделенного частотного ресурса. Например, по сравнению с AMPS эффективность CDMA может быть выше в 30 раз. Эту эффективность можно проанализировать с помощью теоремы Шеннона, но предельное или близкое к 100% использование частотного ресурса пока недостижимо, что можно объяснить тем, что любой метод многостанционного доступа уступает по суммарной пропускной способности таким технологиям, в которых в отведенной полосе организован один скоростной канал, занимающий всю полосу. Это также касается и CDMA: вследствие того что все каналы используют один и тот же частотно-временной ресурс, то и здесь имеется источник взаимных помех.

Технологии CDMA, использующие сигналы с расширенным спектром, обычно обозначаются термином SSMA (Spread Spectrum Multiple Access). Системы этого класса условно делятся на две группы - "чистые" и гибридные (рис. 3).

"Чистыми" методами доступа являются DS-CDMA, FH-CDMA и TH-CDMA; к гибридным (с разными комбинациями методов расширения спектра) можно отнести DS/FH, DS/TH, FH/TH и DS/FH/TH. Гибридные методы позволяют получить новые специфические характеристики радиосистемы, которые не обеспечиваются каждой из их составляющих в отдельности. Следует отметить, что под термином "гибридный" в предлагаемой классификации подразумевается сочетание методов расширения спектра и многостанционного доступа

В настоящее время известны три основных метода расширения спектра: DS (Direct Sequence) - прямая последовательность, FH (Frequency Hopping) - скачкообразная перестройка частоты и TH (Time Hopping) - псевдослучайная перестройка во времени. Соответственно существуют три способа передачи сигнала с расширением спектра: DS-SS, FH-SS и TH-SS.

Системы DS-CDMA

Один из наиболее широко применяемых сегодня на практике способов формирования ШПС, который называется методом прямого расширения спектра путем фазовой модуляции несущей определенной кодовой последовательности (DS-SS - Direct Sequence Spread Spectrum), был изобретен американскими специалистами Дж. Г. Грином и М. Г. Никольсоном в 1957 г. Ими был предложен метод построения бинарной кодовой последовательности с хорошими корреляционными свойствами. Позже было выполнено значительное число работ, посвященных синтезу подобных псевдослучайных последовательностей с помощью регистров сдвига. К первым теоретическим разработкам в этом направлении относятся исследования С. Голомба (1955 г.) и Н. Цирлера (1959 г.)

Метод прямой последовательности (DS) - это модуляция несущей информационным сигналом с последующей модуляцией широкополосным расширяющим сигналом. В качестве широкополосного сигнала, как правило, используются случайные или псевдослучайные последовательности (ПСП).

Разница между ними заключается в следующем: случайная последовательность непредсказуема и может быть описана только в статистическом смысле. А ПСП на самом деле не является случайной - это детерминированная периодическая последовательность, воспринимаемая передатчиком и приемником. Тому, кто не знаком с данным видом ПСП, она покажется абсолютно случайной. Такие системы нашли свое применение в системах подвижной сотовой связи (например, стандарт IS-95), в фиксированном абонентском радиодоступе (FBWA) и других системах связи.

Системы FH-CDMA

Идея реализации скачкообразной перестройки частоты, или многочастотной модуляции с кодовым управлением синтезатором частот, впервые возникла при построении систем военной связи. Системы FH-CDMA обеспечивают высокую помехозащищенность и низкую вероятность перехвата.

Принцип скачкообразной перестройки частоты в CDMA-системах воплощается следующим образом. Любой бит передается в виде комбинации из N частот, где N - размерность базиса частот, причем на каждой частоте передается своя псевдослучайная последовательность (ПСП). В течение заданного временного интервала Т несущая остается неизменной, а по его истечении она скачкообразно изменяется. Алгоритм переключения частоты несущей для каждого абонента индивидуален, благодаря чему возможна одновременная работа большого числа абонентов в общей полосе частот. Полный набор используемых частот может быть достаточно велик, однако в каждый заданный алгоритмом интервал времени мобильная станция излучает только на одной частоте. По сравнению с классическим методом расширения спектра прямой последовательностью DS, в соответствии с которым сигнал передается в широкой полосе частот и имеет малый уровень мощности, при использовании FH-CDMA мощность излучения сигнала гораздо выше, а занимаемый в эфире участок спектра значительно уже. Это позволяет обеспечить лучшую, чем в системах DS-CDMA, защиту от узкополосных помех. При наличии широкого набора рабочих частот вероятность одновременной передачи информации от двух абонентов на одной и той же частоте достаточно мала. Отсюда вытекают и главные достоинства технологии FH-CDMA: более высокая помехоустойчивость и меньшая чувствительность к разбросу мощностей мобильных станций. Кроме того, системам на базе FH-CDMA не нужен сплошной участок спектра: изменяя алгоритм перестройки, можно исключить из спектра те частоты, работа на которых запрещена.

Системы TH-CDMA

Метод расширения спектра с временной перестройкой TH-CDMA состоит в следующем. Информационный сигнал сжимается во времени и передается в виде коротких пакетов в случайные моменты времени, определяемые специальной кодовой последовательностью ПСП. Временная ось при использовании TH-CDMA сегментируется на кадры длительностью Т, каждый из которых состоит из М временных интервалов длительностью Т/М. В течение одного кадра информация передается только в одном из временных интервалов (и этим TH-CDMA напоминает способ импульсной временной модуляции). Очевидно, что ширина полосы частот, необходимая для реализации TH-CDMA, должна быть гораздо больше, чем при DS-CDMA, а конкретно - в М раз. Снижение взаимных помех в системах TH-CDMA достигается за счет выделения абонентам различных временных интервалов. Корректирующие коды, конечно, повышают помехоустойчивость, но не гарантируют правильного восстановления полезного сигнала.

Защита систем TH-CDMA от внешних помех обеспечивается самой основой метода. Поскольку сигнал TH-CDMA сжат во времени, т.е. излучается лишь в интервале, равном 1/В (В -база сигнала), при приеме он обрабатывается в течение такого же короткого промежутка времени, поэтому мешающий сигнал будет уменьшен также в В раз. Что же касается защиты от перехвата, то, хотя частота, на которой передаются данные, и является фиксированной, сам момент начала передачи неизвестен, а потому приемнику перехвата трудно определить начало и конец этой передачи, а самое главное - выяснить, какому абоненту принадлежит излучаемый сигнал. Данный метод наиболее предпочтителен в тех системах, где ограничена средняя, а не пиковая мощность передатчика.

Метод прямой последовательности для расширения спектра (DSSS - англ. d irect s equence s pread s pectrum) — широкополосная модуляция с прямым расширением спектра, является одним из трёх основных методов расширения спектра, используемых на сегодняшний день (см. методы расширения спектра). Это метод формирования широкополосного радиосигнала, при котором исходный двоичный сигнал преобразуется в псевдослучайную последовательность, используемую для модуляции несущей. Используется в сетях стандарта IEEE 802.11 и CDMA для преднамеренного расширения спектра передаваемого импульса.

Метод прямой последовательности (DSSS) можно представить себе следующим образом. Вся используемая «широкая» полоса частот делится на некоторое число подканалов — по стандарту 802.11 этих подканалов 11. Каждый передаваемый бит информации превращается, по заранее зафиксированному алгоритму, в последовательность из 11 бит, и эти 11 бит передаются как бы одновременно и параллельно (физически сигналы передаются последовательно), используя все 11 подканалов. При приёме, полученная последовательность бит декодируется с использованием того же алгоритма, что и при её кодировке. Другая пара приёмник-передатчик может использовать другой алгоритм кодировки — декодировки, и таких различных алгоритмов может быть очень много.

Первый очевидный результат применения этого метода — защита передаваемой информации от подслушивания («чужой» DSSS-приёмник использует другой алгоритм и не сможет декодировать информацию не от своего передатчика).

При этом сильно уменьшается отношение уровня передаваемого сигнала к уровню шума, (то есть случайных или преднамеренных помех), так что передаваемый сигнал уже как бы неразличим в общем шуме. Но благодаря его 11-кратной избыточности принимающее устройство все же сумеет его распознать.

Еще одно чрезвычайно полезное свойство DSSS-устройств заключается в том, что благодаря очень низкому уровню мощности своего сигнала они практически не создают помех обычным радиоустройствам (узкополосным большой мощности), так как эти последние принимают широкополосный сигнал за шум в пределах допустимого. И наоборот — обычные устройства не мешают широкополосным, так как их сигналы большой мощности «шумят» каждый только в своем узком канале и не могут целиком заглушить весь широкополосный сигнал.

Использование широкополосных технологий дает возможность использовать один и тот же участок радиоспектра дважды — обычными узкополосными устройствами и «поверх них» — широкополосными.

В каждый передаваемый информационный бит (логический 0 или 1) встраивается последовательность так называемых чипов. Если информационные биты — логические нули или единицы — при потенциальном кодировании информации можно представить в виде последовательности прямоугольных импульсов, то каждый отдельный чип — это тоже прямоугольный импульс, но его длительность в несколько раз меньше длительности информационного бита. Последовательность чипов представляет собой последовательность прямоугольных импульсов, то есть нулей и единиц, однако эти нули и единицы не являются информационными. Поскольку длительность одного чипа в n раз меньше длительности информационного бита, то и ширина спектра преобразованного сигнала будет в n раз больше ширины спектра первоначального сигнала. При этом и амплитуда передаваемого сигнала уменьшится в n раз.

Чиповые последовательности, встраиваемые в информационные биты, называют шумоподобными кодами (PN-последовательности), что подчеркивает то обстоятельство, что результирующий сигнал становится шумоподобным и его трудно отличить от естественного шума.

Используемые для уширения спектра сигнала чиповые последовательности должны удовлетворять определённым требованиям автокорреляции. Под термином автокорреляции в математике подразумевают степень подобия функции самой себе в различные моменты времени. Если подобрать такую чиповую последовательность, для которой функция автокорреляции будет иметь резко выраженный пик лишь для одного момента времени, то такой информационный сигнал возможно будет выделить на уровне шума. Для этого в приёмнике полученный сигнал умножается на ту же чиповую последовательность, то есть вычисляется автокорреляционная функция сигнала. В результате сигнал становится опять узкополосным, поэтому его фильтруют в узкой полосе частот и любая помеха, попадающая в полосу исходного широкополосного сигнала, после умножения на чиповую последовательность, наоборот, становится широкополосной и обрезается фильтрами, а в узкую информационную полосу попадает лишь часть помехи, по мощности значительно меньшая, чем помеха, действующая на входе приёмника (если не используется приёмник с алгоритмом Боцмана).



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 910; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.160.70 (0.009 с.)